Invariance principle:
Example: (pendelum)

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-a \sin \left(x_{1}\right)-b x_{2}
\end{aligned}
$$

-we tried $V(x)=\frac{1}{2} x_{2}^{2}+a(1-\cos (x)$,

$$
\Rightarrow \quad \dot{v}(x)=-b x_{2}^{2} \leqslant 0
$$

- $\quad \dot{V}(x)=0$ for all x on $x_{2}=0$ line
$\dot{V}(x)<0$ otherwise
- Lasalle's invariance tho
 provides a tool to conclude about convergence of asymptatic behavior of solution when $\dot{v} \leqslant 0$

Definitions:

- a set M is invariant under dyn. $\dot{x}=f(x)$ if $x(a) \in M \Rightarrow x(t) \in M \forall t$

- $X(t)$ approaches the set M, or $X(t) \rightarrow M$ as $t \rightarrow \infty$ if $\operatorname{dist}(X(t), M) \rightarrow 0$ as $t \rightarrow \infty$

$$
\operatorname{dist}(x, M)=\inf _{P \in M}\|x-p\|
$$

La Sole theorem (the 4.4 in Khalil)

- Suppose the solution $X(t)$ is boconded or $X(t) \in \Omega \quad \forall t$ for some compact set Ω
- Assure $v(x) \leqslant 0 \quad d x \in \Omega \quad$ closed and bounded
- Let $E=\{x \in \Omega \mid \dot{V}(x)=0\}$
- Let M be largest invariant set in E
- Then,

$$
x(t) \rightarrow M \text { as } t \rightarrow \infty
$$

Remark

- V is not necessarily $P \cdot d$. in the theorem.
- Assumption that $X(t)$ is bdl is important.

To ensure boundedness

- If V is $\rho . d$., then solutions starting near origin remain bounded (because of stability)
- If Vis p.d + radially unbounded, then all solutions remain bounded.

Coralary:

- Let v be $P d$ and $\dot{V}(x) \leqslant 0 \forall x \in D$
- Let M be largest invovient set of $E=\{x \in D \mid \dot{v}(x)=0\}$
- If $\left.M=\{0\} \Rightarrow \begin{array}{l}x(t) \rightarrow 0 \Rightarrow x=0 \text { is AS } \\ \text { as } t \rightarrow \infty\end{array}\right)$
- If, moreover, V is radially unbounded and

$$
\hat{v}(x) \leqslant 0 \quad \forall x \in \mathbb{R}^{n} \Rightarrow x=0 \text { is } \theta A S
$$

- Remark: $M \geq\{0\}$ means that no solution can Stay in other than $X(t)=0$

Example: (pendelum)

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-a \sin \left(x_{1}\right)-b x_{2}
\end{aligned}
$$

take $D=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid \quad x_{1} \in(-\pi, \pi)\right\}$

$$
\begin{aligned}
& \dot{V}(x)=-b x_{2}^{2} \leqslant 0 \quad \forall x \in D \\
& E=\{x \in D \mid \dot{y}(x)=0\}=\left\{\left(x_{1}, x_{2}\right) \left\lvert\, \begin{array}{l}
x, \in(-a, \pi)\} \\
x_{2}=0
\end{array}\right.\right\}
\end{aligned}
$$

- We want to find ole largest invariant set Min E

$$
\text { if } \begin{aligned}
x(t) \in E \quad \forall t & \Rightarrow x_{2}(t)=0 \quad d t \\
& \Rightarrow \dot{x}_{2}(t)=0 \quad d t \\
& \Rightarrow \sin \left(x_{1}(t)\right) \geq 0 \quad d t \\
& \Rightarrow x_{1}(t)=0
\end{aligned}
$$

\Rightarrow the oily solution that stays in E is $x(t)=0$

$$
\Rightarrow M=\{0\} \Rightarrow A S
$$

- La Sole's tho is also useful in convergence to an eqlb. Set

Example: (adaptive control)

- Suppose we like to stabilize the system

$$
\dot{x}=\theta^{*} x+u_{k} \text { control input }
$$

by desining the contra

- If θ^{*} is known, we can set $u z-\left(\theta^{*}+1\right) x$ So that $\quad \dot{x}=-x \quad$ stable
- Assure θ^{*} is unknown. Let $u=-(\hat{\theta}+1) x$ where $\hat{\theta}$ is an estimate of θ^{*}
- We adapt $\hat{\theta}$ according to $\hat{\theta}=x^{2}$

So that $\hat{\theta}$ becomes large when x is not converging to zero

- closed, loop

$$
\dot{x}=\left(\theta^{*}-\hat{\theta}-1\right) x
$$

sys.

$$
\dot{\hat{\theta}}=x^{2}
$$

- Candidate tyapunno fume.

$$
V(x, \hat{\theta})=\frac{x^{2}}{2}+\frac{(\hat{\theta}-\hat{\theta})^{2}}{2}
$$

- Therefore,

$$
\hat{V}(x, \hat{\theta})=\left[x, \hat{\theta}-\theta^{*}\right]\left[\begin{array}{c}
\left(\theta^{*}-\hat{\theta}-1\right) x \\
x^{2}
\end{array}\right]
$$

$$
=\left(\theta^{*}-\hat{\theta}-1\right) x^{2}+\left(\hat{\theta}-\theta^{*}\right) x^{2}
$$

$$
=-x^{2} \leqslant 0
$$

$-\quad \quad Z \geq\{(x, \hat{\theta}) \mid \hat{v}(x, \hat{\theta})=0\} \geq\left\{(x, \hat{\theta}) \left\lvert\, \begin{array}{l}x=0 \\ \hat{\theta} \in \mathbb{R}\end{array}\right.\right\}$

- By LaSalle, $(X(t), \hat{A}(t)) \rightarrow M C E \Rightarrow X(t) \rightarrow 0$
- The largest invariant set in E, is E itself

$$
x(t)=0 \Rightarrow \overrightarrow{\hat{\theta}}_{(4)}=x^{2}(t)=0
$$

